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Abstract 

Fluctuations in climate variation could influence the emergence and re-emergence of 

vector-borne infectious diseases such as malaria in highlands. The transmission of malaria 

is caused by vector and arthropod that strive in area with high rainfall and they are limited 

by low temperatures and high altitudes. Malaria vectors for many years were found in 

lowlands and not found in highlands because of weather conditions. The present research 

sought to evaluate the possible impacts of climate variability on malaria incidence in 

Rwandan highlands. Using secondary data on malaria cases from medical records in 

sampled using multistage sampling Health Centres of highlands (26) and meteorological 

data collected from meteorological stations of Mubuga, Kivumu and Karambi. Regression 

analysis was used to determine relationship between climate variability and malaria 

prevalence. Analysis of data for 11 years period indicated that; maximum temperature did 

not have high variation; it was in the range of 23 and 25oC, while minimum temperature 

varied considerably with a range of 8.02 and 14.55, average of minimum and maximum 

indicated linear growth as it combines the values of maximum and minimum temperature 

(16.34 and 19.54oC), rainfall was increasing throughout of the period of study with high 

variation and extreme weathers, the monthly average was between 95.62 to 156 mm. In 

Karongi it varied between 87.00 to 122 mm, Muhanga it was between 80.63 to 235 mm and 

Rubavu it was between 81.33 to 136 mm. Relative humidity was also important, its 

variation was not too high since the highest value of relative humidity was 72.24% and the 

lowest was 66.10%. Generally relative humidity was decreasing with time. With 5% level 

of significance, all selected climate parameters were not correlating with malaria 

transmission at the same level; in Karongi malaria prevalence had a strong positive 
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correlation with: maximum temperature and rainfall, r=0.68, a moderate positive 

correlation with rainfall and relative humidity, r=0.5 and a strong positive correlation with 

average temperature and rainfall, r=0.66.  In Muhanga malaria prevalence had a strong 

positive correlation with minimum temperature, r=0.76, while in Rubavu malaria 

prevalence had a weak positive correlation with maximum temperature and relative 

humidity, r=0.44 and a weak positive correlation with average temperature, rainfall and 

relative humidity r=0.33. Results showed the evidence of the existence of relationship 

between climate parameters and malaria prevalence in highland areas of Rwanda. All 

national programs on malaria control should take into account this area of Rwandan 

highland, since it is highly susceptible to climate change and malaria prevalence. 

Keywords: Climate variability, Highland, malaria, incidence, prevalence 

1. INTRODUCTION 

Malaria is both preventable and treatable 

disease (UNICEF, 2015). Yet more than 

220 million cases of malaria are estimated 

to occur each year all over the world, and 

approximately 785,000 people die from 

the disease annually. Half of the world’s 

population, some 3.3 billion people living 

in 109 countries, are at risk of malaria 

(Paaijmans et al., 2009). Worldwide, 

malaria is the fifth-leading cause of death 

from infectious diseases (after respiratory 

infections, HIV/AIDS, diarrheal diseases, 

and tuberculosis) (WHO, 2014).  

Each year, a million of people are killed 

by malaria in Africa, according to the 

World Health Organization (WHO). In 

2006 more than 90 percent of deaths 

victims of malaria, were from African 

region where 45 of the 53 countries are 

endemic for the disease (WHO, 2014). 

These data render malaria the dominant 

tropical parasitic disease and one of the 

top three killers among communicable 

diseases (Kuhn, et al. 2005). Malaria also 

can cause morbidity through fever, 

weakness, malnutrition, anemia, spleen 

diseases, and vulnerability to other 

diseases (Oaks, et al, 1991).    

Malaria is considered endemic in regions 

of stable Plasmodium transmission, but 

malaria outbreaks often also rise in 

regions of unstable transmission where 

altitude can be 1500-2500 meters above 
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sea level, which are characterised by 

climate that is not suitable for mosquitoes 

(Kuhn, et al., 2005). For African 

highlands, every 1000 meter gain in 

elevation is accompanied with 

temperature decrease of 6oC (Kevin, 

2009). In such regions, malaria outbreaks 

are considered as irregular, but sometimes 

higher than normal rates of malaria 

transmission often occur, and symptoms 

are exacerbated due to the low immunity 

of human population inhabiting these 

areas. In addition of that, local population 

may not be aware of mosquito types in 

their neighbourhood, what may result in 

reduced adoption of protection 

measurement (Patz et al., 2008). 

Numerous, and in some cases conflicting, 

predictions have been developed 

regarding the frequency, severity, and 

duration of epidemics that may emerge. 

With respect to the bio geographical 

focus of this issue, the central question is 

whether pathogens and parasites that are 

currently restricted to lower latitudes 

where the world’s greatest biodiversity 

lies move toward poles (mostly north) 

and upward in altitude (Chapin III et al., 

2012).  

Rwanda had made a big achievement 

toward malaria eradication as it was 

among the pillars of MDG (UNICEF, 

2015), but, recently WHO Global Malaria 

Program (2015) reported a tripling in 

confirmed malaria cases (from 483 000 to 

1.6 million), and a doubling in admissions 

(from 5306 to 11 138) between 2012 and 

2014 According to preliminary analysis 

conducted by the MOPDD, the vast 

majority of this increase is among persons 

over five years of age (RBC, 2017). This 

increase in malaria case numbers in 

Rwanda (according to RBC) are most 

likely due to resistance increase to 

insecticides, anti-malarial drugs, 

substandard LLINs and climate 

variability (President's Malaria Initiative, 

2014). 

While most of highlands of Rwanda are 

located in the fringes of endemic zones, 

where transmission is limited by rainfall 

or by lower temperatures, there are strong 

seasonal patterns and occasional major 

epidemics (Bizimana, 2015). In such 

regions, climate is a major determinant of 

year-to-year changes in malaria 

incidence. In some locations, warming 

trends in the past two decades might have 
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contributed to changing the epidemiology 

of malaria (Paul & Dirk, 2004). But what 

effects will future changes in climate 

have on malaria in Rwandan highland?  

Regarding research priorities, there is a 

great need to better understand the current 

relationships between “multiple physical 

phenomenon” of weather and disease, 

while at the same time we must begin to 

consider future risk estimates required by 

policy makers.  New discoveries from 

field data are particularly essential in 

constructing credible simulation models. 

The present paper tried to model the 

effect of climate variability on malaria 

incidence in Rwandan Highlands for the 

period of 11 years.   

2. METHODOLOGY 

2.1. Study area 

Rwanda is a small (26,338 km2), land-

locked country in the Great Lakes region 

of Eastern Africa, bordered by Uganda, 

Burundi, the Democratic Republic of the 

Congo, and Tanzania. It has a population 

of approximately 12 million people 

(projection from 2012 census results), 

making it the most densely populated 

country in continental Africa. 

Administratively, the country is made up 

of 30 districts, which are divided into 

sectors, cells (cellules), and 14,953 

umudugudus (villages of 50–100 

households).  

 

Rwanda has a complex climate, with 

wide variations across the country and 

with very strong seasonality (DFID, 

2009). It is primarily a mountainous 

country, with average altitude of 900 m in 

south-west, 1500 to 2000 m in the south 

and the centre of the country, 1800 to 

3000 m in the highlands of the north and 

the west and 3000 to 4500 m in the 

regions of Congo-Nile Crest and the 

chain of volcanoes (President's Malaria 

Initiative, 2014). The equatorial climate is 

modified by this widely varying altitude 

across the country. It leads to a more 

temperate climate than much of the rest 

of East Africa. Average annual 

temperature in Rwanda ranges between 

16ºC and 20ºC though they are much 

lower than this in the higher mountains 

(MINIRENA,2013)
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2.2. Highland region of study area 

Rwandan highland lies in West, North 

and Southern part which is one of the four 

categories of Rwandan relief. The study 

area covers 3 Districts; Karongi and 

Rubavu in Western province in the range 

of Congo-Nile divide and Muhanga 

district in Southern province. The study 

area lies in 1.505o and 2.317oS and 

29.244o and 29.813oE at an altitude 

ranging from 1,500 to 3000 m above the 

sea level. Note that the districts comprise 

lower land relief for instance foothills, 

but the altitude is dominated by highland 

parts with altitude of 1500 m above the 

sea level (Figure 1). 

Average temperature is between 16–21oC 

while the lowest temperature is 6oC. The 

rainfall patterns are characterized by four 

seasons, a short rainy-season from 

September to November and a longer rain 

season between March to May. Between 

these seasons are two dry periods, a short 

dry period between December to 

February and a long dry period from June 

to August. Rainfall is around 1500 mm 

per annum in the north and northwest 

volcanic highland areas. 
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Figure 1: Topographic map of the study area (Muhanga, Karongi and Rubavu)  
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2.3. Data collection methods 

The researcher secured the permit for 

accessing the secondary data form 

Ministry of Health and Rwanda 

Meteorology Agency. The permit was 

issued by Rwanda Biomedical Centre 

after being recommended by Rwanda 

National Ethic Committee. Preliminary 

visit was performed to ensure the 

matching of Health centres and 

meteorological stations.  

2.3.1. Malaria cases collection 

Epidemiological data collected were 

monthly malaria cases, between October 

2004 and December 2014, collected at 

health centre facility level in each district 

for routine reporting to the HMIS. Data 

included parasitological confirmed cases 

symptomatically diagnosed as malaria by 

trained health workers. Data were 

aggregated at sector’s level for all health 

facilities in each area. Data for 11 years 

were available in the three districts of 

study area, giving 26 units (equivalent to 

26 sectors and health centres). 

2.3.2. Population data 

Baseline population for each of these 

Health Centres was obtained from 

National Statistics Institute of Rwanda 

(NSIR) using census of 2002 and 2014. 

Subsequent population serviced by each 

health centre for the years 2004 to 2014 

was projected using the exponential 

population growth equation;  

Nt=N0 e
rt  

Where Nt =size of population at time t, N0 

=size of population at time zero, e=base 

of natural logarithms =2.71828, r=rate of 

population growth, t=time elapsed.  

Malaria incidence was per 1000 

population were calculated as follow: 

Malaria Incidence = 

1000x
periodgivenainPopulation

casesmalariaofNumber
2.

3.3. Climate data collection 
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Time series daily meteorological data of 

the period 2004–2014 composed by daily 

temperature, rainfall and relative 

humidity, were obtained from Rwanda 

Meteorological Agency (RMA). The 

parameters collected were from 3 

meteorological stations located in study 

area; Mubuga for Karongi District, 

Kivumu for Rubavu District and Karambi 

for Muhanga District. Data were 

computed as mean minimum monthly 

temperature, mean maximum monthly 

temperature, average of mean maximum 

and minimum temperature, average 

monthly rainfall and average of relative 

humidity. 

2.4. Data Analysis 

2.4.1. Descriptive statistics analysis 

Descriptive statistics were used for 

organizing, summarizing, and presenting 

data in an informative way using tables 

and figures. Average was computed for 

all variables and median to fill missing 

data. Normalization of data using natural 

logarithm was used to obtain a more 

homogeneous variance of a series to be 

used in multiple linear regressions and 

correlation.  

2.4.2. Multiple Linear Regression 

analysis 

The purpose was to model the 

dependence of malaria incidence on 

covariates including maximum 

temperature, minimum temperature, and 

average of minimum and maximum 

temperature, rainfall and relative 

humidity in Rwandan highlands. 

Assuming other factors hardly to control 

was held constant. Throughout this study 

adoption of the following notation for the 

variables: x1 is temperature, x2 is rainfall 

while x3 is relative humidity. 

E-views 7 was used in model construction 

with a lag period of one month, the period 

corresponding to the parasite cycle 

completion as Paaijmans, et al, (2009) 

indicated.   

The model was:  y = ß0 + ß1X1 + ß2X2 + 

ß3X3+ε 

For the final model, the variables with 

P>0.05 would be removed and rerun the 

model with the only variables with 

significance below 0.05. In the model, ε 

is a random error with a mean of zero and 

a constant standard deviation σ. The 

model was estimated by finding the 
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coefficients of the x values that make the 

error sum of squares as small as possible.   

Significance level used was 5%:  which is 

the probability of rejecting null 

hypothesis when it is true.  

The explanation power (squared 

correlation R2) was used to measure the 

goodness of fit of the regression model 

and indicated the explanatory power of 

the model. The R2 was used to measure 

the proportion of variations in malaria 

incidence that is caused by variation in 

climate parameters. A high R2 

represented a higher influence of climate 

parameter, while a low R2 signified a 

weak relationship between climate 

variation and malaria incidence.   

3. RESULTS 

This study sought to analyse the 

relationship between climate variation 

(temperature, rainfall and relative 

humidity) and malaria incidence in 

Rwandan highlands. The summary of the 

data collected in three districts were 

presented in Table 1

Table 1: Average malaria incidence, temperature, rainfall and relative humidity for 2004-

2014 

Year 

Malaria 

incidence 

Max 

temp in 
oC 

Min 

Temp in 
oC 

Mean 

temp in 
oC 

Av of 

Rainfall 

Rel 

Hum 

2004 14.44 24.44 8.24 16.34 107.44 72.23 

2005 12.46 25.27 8.02 16.65 98.91 69.72 

2006 14.31 24.51 11.72 18.10 120.13 69.74 

2007 5.03 23.31 13.02 18.18 98.62 71.02 

2008 2.88 23.58 14.54 19.07 95.61 73.67 

2009 4.22 24.08 14.34 19.19 96.47 70.35 

2010 1.65 24.05 13.60 19.54 113.38 68.29 

2011 0.08 23.94 12.60 18.16 124.60 70.71 

2012 0.26 24.35 13.55 18.99 109.12 68.86 

2013 2.47 24.40 14.55 19.48 104.49 66.09 

2014 5.73 24.28 13.05 18.44 156.93 66.66 

Grand 

Total 5.14 24.18 12.78 18.53 108.11 69.58 
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Table 1 indicated that malaria incidence 

was in the range of 12/1000 and 14/1000 

between 2004 and 2006, after it reduced 

sensibly to 5/1000 in 2007, since then the 

lowest value stood at 0.08/1000 in 2011. 

There was a linear increase from 2011 

and following years as Table 1 gave 

detail. Climate parameters varied 

according to the seasons of the year; 

Rwanda annual weather is divided into 

four seasons; long dry season from June 

to mid-September, Short rain season in 

mid-September, October, and November, 

Short dry season in December to 

February, Long rain season March, April 

and May (MAM). These seasons affect 

malaria distribution in the country. 

Malaria transmission occurs year-round 

with two peaks (May-June and 

November-December) in Rwanda, 

following distinct rainy seasons 

(MINISANTE, 2011). Figure 2 presented 

malaria incidence according to different 

seasons of the year from 2004 to 2014.  

Muhanga always presented high annual 

malaria incidence than others, secondly 

comes Karongi and lastly Rubavu. But 

the growth rate was higher in Karongi
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Figure 2: Monthly malaria incidence in study area for 11 years. 

From the Figure 2, the month of March 

proved important peaks of transmission in 

Karongi and Muhanga, while in Rubavu 

additional peak was observed in 

February. In December, except Karongi 

other curves indicated reduction. Annual 

May/June’s peaks of transmission 

remained throughout the area of study. 

3.1. Analysis using multiple linear 

regressions 
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Multiple linear regression analysis was 

used to predict malaria incidence using 

climate variables (temperature, 

precipitation and relative humidity), 

temperature was presented in 3 levels; 

Maximum temperature, Minimum 

temperature and mean temperature for 

each district. Table 2 summarize the 

result of analysis:
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Table 2: Summary of multiple linear regressions 

Temperature Regression equation R-square

Corelation 

coefficient 

Valid parameters at 

5% Model equation

Max Temp ŷ=148.18-50.35x1+0.12x2+2.74x3+0.34 0.47 0.68 Max Temp, Prec ŷ=146.63-46.23x1+0.132x2+0.345

Mini Temp ŷ=55.35+1.12x1+0.18x2-14.22x3+0.39 0.28 0.5 Prec, Relat hum ŷ=58.83+0.18x2-14.33x3+0.39

Aver Temp ŷ=226.69-73.43x1+0.14x2-2.16x3+0.41 0.44 0.66 Av temp, prec ŷ=232.69-78.34x1+0.14x2+0.41

Max Temp ŷ=3.18-1.6x1-0.0083x2+0.36x3+0.77 0.59 0.76 None Absent

Mini Temp ŷ=-13.44+4.10x1-0.038x2+0.5x3+0.76 0.59 0.76 Minimum temp ŷ=-8.33+2.91x1+0.76

Aver Temp ŷ=0.32+0.49x1+0.01x2-0.58x3+0.77 0.59 0.76 none Absent

Max Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.2 0.44 Max Temp, Rel Hum ŷ=-52.31+9.99x1+4.3x3+0.20

Mini Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.04 0.2 None Absent

Aver Temp ŷ=-50.60+10.13x1+0.050x2+3.74x3+0.20 0.11 0.33 Av temp, prec, hum ŷ=-31+3.75x1-0.004x2+4.35x3+0.21
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Table 2 summarizes the results of 

analysis using multiple linear regressions; 

three equations were presented for every 

district according to maximum, minimum 

and average temperature. Considering the 

level of significance, a parameter with P 

> 0.05 was removed from the equation 

and final model was presented using valid 

parameters at 5%. Some models at 5% 

were absents, others one or two 

parameters were valid.      

The hypothesis stated that Ho: b1 = b2 = b3 

= 0, against H1: b1 ≠ b2 ≠ b3 ≠ 0, not all 

the bs are zero and excluding mutually. 

There is an influence of temperature, 

rainfall, relative humidity on malaria 

incidence in Rwandan highland. 

Regression coefficients are b1, b2, b3 (ŷ= 

b0 + b1x1 + b2x2 + b3x3 are valid). 

From the Table 2, regression equations 

indicated the values of bs different from 

0, what validate alternative hypothesis 

and rejection of null hypothesis at 5%. 

4. DISCUSSION 

Data analysis revealed that incidence of 

malaria was influenced by the seasons. 

According to Greek physician 

Hippocrates (about 400 BC) epidemics 

are related to seasonal weather changes, 

he uttered that physicians should have 

“due regard to the seasons of the year, 

and the diseases which they produce, and 

to the states of the wind peculiar to each 

country and the qualities of its waters” 

(McMichael et al., 2003) 

Generally the fluctuation of climate 

variables were quite different from what 

was normally expected, according to 

Chemonics International Inc, (2003) 

average temperature should not go 

beyond 16-17oC while annual rainfall 

should be 1300-2000 mm or 108-166 mm 

per month, relative humidity 70% 95%. 

Table 1 indicated that temperature and 

rainfall rose while relative humidity 

reduced significantly.  

Data collected indicated high spatial and 

time variation of climate parameters; 

generally, maximum temperature ranged 

between 23 and 25oC with lower 

variation, while minimum temperature 

ranged between 8.02 and 14.55oC with 

considerable variation, average of 

minimum (16.34oC) and maximum 

(19.54oC) indicated linear growth. 

Rainfall was increasing; the monthly 

average ranged between 95.62 to 156 

mm, while relative humidity, its variation 
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was not too high; the highest value was 

72.24% and the lowest was 66.10%. 

Malaria transmission occurs year-round 

with two distinct peaks (May-June, 

November-December) in the endemic 

zones following distinct rainy seasons 

(MINISANTE, 2011).  

Figure 1, indicated slight difference 

where March shows another important 

peak of transmission in Karongi and 

Muhanga, while in Rubavu another peak 

was observed in February. December 

shows a decrease instead of showing a 

peak. May/June’s transmission peak 

remains throughout the area of study. 

Since geographical and seasonal 

distributions of many infectious diseases 

are linked to climate, the possibility of 

using climate parameters as predictive 

indicators in disease EWS has long been 

a focus of interest (Kuhn et al., 2005). 

The geographical distribution and 

population dynamics of insect vectors are 

closely related to patterns of temperature, 

rainfall and humidity. 

Seasonal analysis of malaria incidence 

indicated how climate variation 

influenced the variation of malaria 

prevalence in Rwandan highlands. It was 

confirmed that rainfall plays an important 

role in the creation of breeding sites for 

vectors as it can flush away the 

mosquitoes’ breeding sites (Wilson, 

2001). Though relative humidity and 

temperature play an important role in the 

survival and longevity of the mosquito 

vector, it is rainfall that regulates the 

development rate of both mosquito and 

parasite to complete lifecycle. When 

relative humidity drops below 50% to 

60%, it is believed that malaria 

transmission cannot occur because of the 

reduced lifespan of mosquitoes 

(Mohammed et al., 2012, Eldridge, 

2009). The mean relative humidity 

throughout the year was between 63.28% 

and 73.87%, which means relative 

humidity is not a limiting factor for 

malaria transmission in the highlands of 

Rwanda. 

Regression analysis of malaria incidence 

and maximum temperature, rainfall and 

relative humidity in Karongi, showed a 

significant result with F-statistic = 

95.134, p < 0.001, and Adjusted R 

squared = 0.47 or 47%.  Except relative 

humidity, other predictors had significant 
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zero-order correlation with malaria 

incidence at 5% significance level.   

Regression analysis using minimum 

temperature, rainfall and relative 

humidity yielded a significant equation 

with F-statistic = 41.98, p < 0.001, 

adjusted R squared = 0.27 or 27%.  

Except minimum temperature, other 

predictors had significant zero-order 

correlation with malaria incidence at 5% 

significance level.  Minimum temperature 

did not have a significant partial effect in 

the full model but rainfall and relative 

humidity had significant partial effects.  

Regression analysis using mean 

temperature, rainfall and relative 

humidity showed a significant equation 

with F-statistic = 86.46, p < 0.001, 

adjusted R2= 0.44 or 44%.  Except 

relative humidity, other predictors had 

significant zero-order correlation with 

malaria incidence at 5% significance 

level.   

Regression analysis using maximum 

temperature, rainfall and relative 

humidity in Muhanga, yielded a 

significant result with F-statistic = 

155.46, p < .001, and adjusted R squared 

= 0.59 or 59%.  All predictors did not 

have significant effect in the full model at 

5% significance level.  When other 

predictors were ignored, maximum 

temperature and rainfall were negatively 

correlated with malaria incidence. 

Maximum temperature in Muhanga 

ranged between 25.6oC and 27.26oC, and 

rainfall had the highest value among other 

Districts of study in 2014 with 

235.21mm. Malaria in that period was not 

significant. Whoever, Muhanga and other 

districts of southern and western 

provinces, malaria incidence remained 

relatively high during malaria post 

intervention period (Karema et al., 2012), 

but negatively correlating with heavy 

rainfall.   

Regression analysis results using 

minimum temperature, rainfall and 

relative humidity yielded a significant 

equation with F-statistic = 158.64, p < 

0.001, and adjusted R squared = 0.58 or 

58%.  It was observed that only 

prediction with minimum temperature 

was possible at 5% significant level. 

Other predictors did not have significant 

effect on the full model at 5% 

significance level.   
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Significant reduction of minimum 

temperature remained above the threshold 

for Anopheles gambiae mosquito vector 

(the main mosquito species found in the 

East African highlands) whose biological 

activity is between 8oC to 10oC (Dekens 

et al., 2013), This value of minimum 

temperature stood between 14.6.6oC and 

15.2oC. While the minimum temperature 

threshold for transmission of the 

Plasmodium falciparum parasite (the 

main parasite species found in the East 

African highlands) is 16oC to 19oC, 

temperature is lower at night than day 

time. According to Githeko (2010), due to 

the influence of diurnal maximum 

temperature (27oC), maturity of malaria 

parasite may take almost 8 days only 

which is less than its lifespan of 23-days 

average of Anopheles gambiae 

mosquitoes.  

Regression analysis using mean 

temperature, rainfall and relative 

humidity yielded, a significant equation 

with F-statistic = 155.12, p < .001. R2 = 

0.59 or 59%.  As shown in Table 2 all 

predictors did not have a significant effect 

on a full model at 5% significance level.  

When other predictors were ignored, 

relative humidity was negatively 

correlating with malaria incidence. 

The average temperature was within the 

minimum conditions of malaria 

transmission (19.2oC and 20oC) but again 

malaria transmission depended on season 

and altitude. Githeko & Ndegwa (2001) 

argued that “if the mean annual 

temperature is superior, or equal, to 

18oC; anomalies superior or equal to 3oC 

would be expected to precipitate malaria 

outbreaks as long as the mean monthly 

rainfall is greater than 150 mm.” Here 

mean temperature was higher than 18oC, 

long term anomalies was higher than 3oC 

but rainfall was below 150 mm, so 

malaria outbreak was expected despite 

the absence of significant effect in the full 

model at 5% significance level.  

Regression analysis using maximum 

temperature, rainfall and relative 

humidity in Rubavu, showed a significant 

result with F-statistic = 20.96, p < 0.001, 

adjusted R squared = 0.19 or 19%, except 

rainfall, other predictors had significant 

zero-order correlation with malaria 

incidence at 5% significance level.   

The increase of maximum temperature in 
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Rubavu between 2011- 2014 with 4 units, 

exposed this area to high risk of malaria. 

Compared with malaria parasite and 

parasite survivorship, maximum 

temperature was higher than 18oC, this 

implied that parasite development was 

too fast despite the low incidence of 

malaria on Figure 1.  

Minimum temperature was too low to 

allow malaria transmission. No where 

minimum temperature reached the 

threshold of neither parasite nor vector 

development. The range was between 

7.56oC in 2011 and 13.94oC in 2013. 

With these values, malaria transmission 

was not possible. The same was observed 

for combination with rainfall and relative 

humidity. Model equation was not 

possible at 5% significance level.  

Regression analysis using mean 

temperature, rainfall and relative 

humidity gave significant equation with 

F-statistic = 10.98, p <0 .001, and 

adjusted R squared = 0.10 or 10%, all 

predictor had a significant zero-order 

correlation with malaria incidence at 5% 

significance level and had significant 

partial effect in the full model, but rainfall 

was negatively correlating with malaria 

incidence, while other predictors were 

positively correlating with malaria 

incidence. 

5. CONCLUSION AND 

RECOMMENDATION 

5.1. Introduction 

This study has used available real 

monthly data on malaria cases, rainfall, 

temperature and humidity over 11 years 

(2004-2014) from the highlands of 

Rwanda to analyse the possible impact of 

climate variability on malaria incidence. 

Data analysis indicated that minimum 

temperature remained above the threshold 

for Anopheles gambiae mosquito vector 

(the main mosquito species found in the 

East African highlands) for its biological 

activity (8oC to 10oC). The minimum 

temperature in study area was between 

8.03oC to 14.55oC. While the threshold of 

minimum temperature for transmission of 

the Plasmodium falciparum parasite (the 

main parasite species found in the East 

African highlands) was 16oC to 19oC. 

Multiple linear regression analysis using 

malaria prevalence as dependent variable, 

with lag period of 1 month, and climate 

parameters as independent variable 
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(maximum, minimum and average 

temperature, rainfall and relative 

humidity), showed that all predictors had 

different impacts at 5% of significance 

level. All the selected climate parameters 

were not correlating with malaria 

transmission at the same level; in Karongi 

malaria prevalence had a strong positive 

correlation with: maximum temperature 

and rainfall, r=0.68, a moderate positive 

correlation with rainfall and relative 

humidity, r=0.5 and a strong positive 

correlation with average temperature and 

rainfall, r=0.66.  In Muhanga malaria 

prevalence had a positive strong 

correlation with minimum temperature 

r=0.76, while in Rubavu malaria 

prevalence had a weak positive 

correlation with maximum temperature 

and relative humidity, r=0.44 and a weak 

positive correlation with average 

temperature, rainfall and relative 

humidity r=0.33. Regression equation 

indicated the values of coefficient bs 

different from 0, what validate alternative 

hypothesis and rejection of null 

hypothesis at 5%. 

5.2. Recommendations  

Meteorological variables are among the 

factors that precipitate malaria epidemic; 

rainfall provides the breeding sites for 

mosquitoes, and higher temperature and 

relative humidity increase mosquito 

survival and parasite development.  

 

Malaria is invading new areas including 

highlands that used to be shelters against 

malaria, but the altitude above 2600 m 

above the sea level, Malaria is still rare 

and its adaptation is still impossible. 

In prediction using climate variability, it 

is highly commendable to use seasonal 

input so that effort can put where it is 

needed: Example preparation of 

medication and other malaria control 

measures just after rain season because it 

is the time when malaria can be on high 

rise        

Facilitation and motivation of more 

research on communicable diseases in 

relation to climate change especially in 

the highlands of Rwanda is needed, as 

climate change is shifting diseases’ 

ecology. 

There is a need for a better understanding 

of the global forces such as global heating 
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and extreme weather events with diseases 

(e,g Eli Niño) and their impact on 

increase and/or transmission of malaria.  

6. Acknowledgment 

Special thank goes to all contributors on 

this research, including Rwanda 

biomedical centre and Rwanda 

meteorology agency that provided 

secondary data on malaria cases and 

climate variables from the study area. We 

wish to thank the staff members of 

Rwanda Natural Resource Authority 

(RNRA) for their assistance during the 

data collection period. 

7. References 

Bizimana, J. P. (2015). Climate 

Variability and Malaria in Rwanda: 

Spatial Assessment of Social 

Vulnerability at Different Scale Levels. 

Huye: University of Rwanda. 

Chapin III, F. S., Matson, P. A., & 

Mooney, H. A. (2012). Principles of 

Terrestrial Ecosystem Ecology. New 

York: Springer-Verlag. 

Dekens, J., Jo-Ellen, P., Zamudio-Trigo, 

A. N., & Echeverria, D. (2013). Climate 

Risk Management for Malaria Control in 

Kenya the Case of the Western 

Highlands. New York: UNDP. 

Eldridge, F. E. (2009). Mosquitoes. In V. 

H. Resh, & R. T. Carde (Eds.), 

Encyclopaedia of Insects (p. 658). 

Oxford: Elsevier. 

Githeko, A. K. (2010). Model For Early 

Prediction of Malaria Epidemics in East 

African Highlands. Nairobi: Kenya 

Medical Research Institute. 

Githeko, A., & Ndegwa, W. (2001). 

Predicting malaria epidemics in the 

Kenyan highlands using climate data: a 

tool for decision makers. Global Change 

and Human Health , 2 (1), 54-63. 

Hedt-Gauthier, B. (2014). Population 

Survey Analysis. eLearning Support. 

IPCC. (2001). Working group I Third 

Assessment Report. Cambridge: 

Cambridge Univesity Press. 

Karema, C., Aregawi, M. W., Rukundo, 

A., Kabayiza, A., Mulindahabi, M., Fall, 

I. S., et al. (2012). Trends in malaria 

cases, hospital admission and deaths 

following scale-up of antimalaria 

intervention, 2000-2010 Rwanda. 

Malaria Journal , 11, 236. 

Kevin, L. D. (2009). The ecology of 

climate change and infectious diseases. 

Ecology , 90 (4), 888-900. 

Kirck, W. (2008). Encyclopedia of Public 

Health. Fieldlestr: Spring. 

Kuhn, K., Campbell-Lendrum, D., 

Haines, A., & Cox, J. (2005). Using 

climate to predict infectious disease 

epidemics. Geneva: World Health 

Organisation. 



East African Journal of Science and Technology, Vol.8 Issue1, 2018 Abias Maniragaba   (P.56-75) 

 

20 

 

MINIRENA. (2013). Rwanda Second 

National Communication under the 

UNFCCC. Kigali: Republic of Rwanda. 

MINISANTE. (2011). Rwanda Malaria 

Program Performance Review. Kigali: 

Republic of Rwanda. 

Mohammed, I. M., Shamarina, S., Nor, R. 

H., & Isthrinayagy, K. (2012). A climate 

distribution model of malaria 

transmission in Sudan. Geospatial Health 

, 7 (1), 27-36. 

Paaijmans, K. P., Read, A. F., & Thomas, 

M. B. (2009). Understanding the link 

between malaria risk and climate. (B. H. 

Singer, Ed.) Ecology , 106 (33), 13844-

13849. 

Patz, J. A., Sarah, O. H., Uejio, C. K., & 

Gibbs, H. K. (2008). Disease Emergence 

from Global Climate and Land Use 

Change. Madical the Clinics , 92, 1473–

1491. 

Paul, O., & Dirk, W. (2004). Climate 

change meets habitat fragmention linking 

landscape and biogeographical scale 

levels in research and conservation. 

Biological conservation , 117, 285-297. 

PRESIDENT’S MALARIA INITIATIVE 

RWANDA. (2016). Malaria Operational 

Plan FY 2017. Kigali: USAID. 

President's Malaria Initiative. (2014). 

Malaria Operational Plan Fy 2014. New 

York: USAID. 

Rwanda Biomedical Centre. (2017). 

Malaria Bulletin. Kigali: Rwanda 

Biomedical Center. 

UNICEF. (2015). Achieving the malaria 

MDG target: reversing the incidence of 

malaria 2000-2015. Geneva: WHO. 

WHO Global Malaria Program. (2015). 

World Report 2015. Geneva: WHO. 

WHO. (2014). World Malaria Report. 

Geneva: Word health organization. 

Wilson, M. L. (2001). Ecology and 

Infectious Disease. In Ecosystem change 

and public health: a global perspective 

(pp. 283-319). Balti

more: The John Hopkins University Press. 


