
East African Journal of Science and Technology, 2012; 2(1):99-113    http://www.eajscience.com 
 
 

99    http://www.eajscience.com     ISSN 2227-1902 (Online version)        eajscience@gmail.com 
 

 

Fuzzy stochastic optimization:  an overview 

 

Stanislas Sakera RUZIBIZA 

 

Independent Institute of Lay Adventists of Kigali (INILAK), P.O. BOX 6392 

Kigali, Rwanda 

                Email : ruzibizass2000@yahoo.com  

 

  Abstract 

 

Fuzzy stochastic Optimization deals with situations where fuzziness and randomness co-occur in 

an optimization setting. 

In this paper, we take a general look at core ideas that make up the burgeoning body of Fuzziness 

Stochastic Optimization, emphasizing the methodological view.   

Being a survey, the paper includes many references to both give due credit to results obtained in 

this field and to help readers get more detailed information on issues of interest. 
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Introduction 

 

Optimization is a very old and classical area 

which is of high concern to many disciplines. 

Engineering as well as management, Politics as 

well as Medicine, Artificial Intelligence as well 

as Operations Research and many other fields 

are in one way or another concerned with 

optimization of design, decisions, structures, 

procedure or information processes. 

Most of Optimization problems encountered in 

Operations Research are essentially based on 

the homo-economicus model. They consist of 

maximizing or minimizing a utility function, 

reflecting decision maker’s preferences, under 

some constraints, expressing decision maker’s 

restrictions. 

Analysis of such problems along with 

construction of algorithms for solving them 
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constitutes the disciplinary matrix of 

Mathematical programming. 

Optimization’s theoretical underpinning is now 

well established and as a result, a broader array 

of techniques including the simplex method 

(S.I. Gass, 1985), ellipsoid method 

(L.G.Khachiayan, 1979), gradient projection 

methods (M.Avriel, 1976), cutting-plane 

methods (B.C.Eaves and W.I. Zangwill, 1971) 

have been developed.  

User friendly software with powerful 

computational and visualization capabilities 

have also been pushed forward. 

All these methods rely heavily on the 

assumption that involved parameters have well-

known fixed values and then take advantage of 

inherent computational convenience.  

 

Unfortunately, most concrete real-life problems 

involve some level of uncertainty about values 

to be assigned to various parameters or about 

layout of some of the problem’s components.  

When a probabilistic description of unknown 

elements is at hand, one is naturally lead to 

Stochastic Optimization (S.Vajda, 1972, J.K. 

Sengupta, 1972, J.Gentle, W.Härdle and Y. 

Mari, 2004).   

In the presence of intrinsic or informational 

imprecision, one has to resort to Fuzzy 

Optimization (M.K. Luhandjula, 1989, D. 

Dubey , S. Chandra, 2012  and D. Dubois, 

2011). 

Nevertheless, in some significant real life 

problems, one has to base decisions on 

information which is both fuzzily imprecise and 

probabilistically uncertain (S. Wang and J. 

Watada, 2012, S. Wang, G.H.Huang and B.T. 

Yang, 2012). Fuzzy Stochastic Optimization 

provides a glimpse into jostling with this kind 

of problems. 

The purpose of this paper is to convey essential 

information on the field of Fuzzy Stochastic 

Optimization to broad audience in a way to 

foster a cross-fertilization of ideas in this field.  

The general aim of Fuzzy Stochastic 

Optimization is to deal with situations where 

fuzziness and randomness are under one roof in 

an optimization framework. 

The term can encompass many diverse models 

and therefore means different things to different 

people. In this paper we review some aspects of 

Fuzzy Stochastic Optimization potentially of 

interest to a broad audience. 

We shall restrict ourselves to linear 

optimization problems so that the main ideas 

are illustrated in a simpler context.  

The remaining of this paper is organized as 

follows: in Section 2, we discuss flexible 

programming problems with random data. 

Section 3 is devoted to Mathematical 

programming problems with random variables 
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having fuzzy parameters. In Section 4, we 

address mathematical programming problems 

with fuzzy random coefficients. Extensions and 

applications of ideas discussed are presented in 

Section 5. We end up in Section 6 with 

concluding remarks along with perspectives for 

future research. 

 

Flexible programming with random data 

 

In this section we focus on situations where the 

objective function of a stochastic program, as 

well as its constraints, is not strictly 

imperatives. 

Some leeways may be accepted in their 

fulfillment.  

This leads to a problem of the type: 

(P1)   

m in  c x                                  
A ix ≲  b i;    i = 1,… , m   

x ∈ X = {x ∈ ℝn  x ≥ 0} 
             

where “  ~ “ means flexibility and “−“ means 

the datum is random. 

This model has been addressed in literature 

(M.K. Luhandjula, 1983 and E. Czogala, 1988) 

by taking advantage of both Fuzzy Set Theory 

(D. Dubois and H. Pragde, 1980) and 

Stochastic Optimization. 

Here is quintessential of ideas developed to 

cope (P1). 

First and foremost it has been noted that (P1) is 

an ill-defined problem. Both the notion of 

optimum and the pure rationality principle (P. 

Kall and S.W. Wallace, 1994) no longer apply. 

Researchers interested with this problem 

resorted them to Simon’s bounded rationality 

principle and sought for satisfying solution 

rather than an optimal one. 

After having put the objective function of (P1) 

in the following constraint form: 

 

C x ≤ C0 , 

 

 where  C0 is a threshold fixed by the decision-

maker, (P1) reads merely: 

 

Find  x ∈ X such that: 

{ A ix ≲  b i;    i = 0,1, … , m                        (1) 

where  A0 =  C and  b0 = C0 

Each inequality of system (1) is then 

represented as a probabilistic set (K. Hirota, 

1981) on (Ω, ℱ, Ρ) with membership function 

with membership function μ
i
(x, ω) that may be 

defined as follows: 

 μ
i
 x, ω =  

1                                           if   A i x, ω ≤  bi ω                            

1 −
A i ω x  − b i ω 

di
     if b i ω <   A i ω x ≤  bi ω + di   

0                                          if        A i ω x >  bi ω  + di                
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where  di > 0 is a constant chosen by the 

decision maker for a permitted violation of 

constraint i. 

It is worth mentioning that μ
i
 x, ω  is the level 

to which the constraint: 

A i(x, ω)  ≤  bi ω      ω ∈ Ω 

is satisfied. 

Other kinds of membership function, more 

appropriate to the situation at hand may be used 

instead of the above piecewise linear functions  

b i ω <   A i ω x ≤  bi ω + di  

A i ω x >  bi ω  + di         

The most used are the logistic and hyperbolic 

functions ( P. Vasant, R. Nagarajan and S. 

Yaacob, 2005). 

According to Bellman-Zadeh’s confluence 

principle (A. Charnes and  W.W. Cooper, 

1963), a decision in a fuzzy environment is an 

option that is at the intersection of fuzzy goals 

and fuzzy constraints. Therefore, a satisfying 

solution of the following stochastic 

optimization problem: 

(P1)′    
max μ

D
(x, ω)           

x ∈ X ∩ Supp μ
D

   
  

where 

                 μ
D
 x, ω  = min

i=0,1…,m
   μ

i
 x, ω  

 (P1)’ can now be solved using techniques of 

Stochastic Optimization (A. Charnes and  

W.W. Cooper, 1963,  S. Vryasev and P.M. 

Pardalos, 2010). 

For instance, if one considers the expectation 

value approach, one has to solve the following 

optimization problem. 

       (P1)′′    
max E( μ

D
(x, ω))           

x ∈ X ∩ Supp μ
D

          
  

To handle this problem, we need an analytical 

expression of the distribution of μ
D
 x, ω . An 

interested reader is referred to E. Czogala, 

1988, for details on these matters.  

A part from the above symmetrical approach 

for dealing (P1), there exists symmetrical 

approaches (M.K. Lundjula and M.M. Gupta, 

1996, and F.Aiche, 1994) where the constraints 

serve to limit the feasible set and where the 

objective function is used to rank feasible 

alternatives. 

To round out this section, let’s mention the fact 

that the above mentioned developments where 

followed by systematic comparison between 

stochastic programming and Fuzzy 

Optimization (J.J. Buckley, 1990, M. Inuiguchi 

and M. Sakawa, 1995). 

These studies displayed many similarities and 

differences that have been put in good use to 

deal with hard stochastic programs through 

simple and relevant fuzzy optimization 

techniques (S. Hursulka, M.P. Biwal and S.B. 

Sinha, 1997, C. Mohan and H.J. Nguyen, 1997, 

S.B. Sinha, S. Hursulka and M.P. Biwal, 2000) 

and vice versa (J.R. Rodrigues, 2005). 
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By the same token, approaches for considering 

simultaneously fuzzy and stochastic constraints 

in a same mathematical program were 

described in C. Mohan and H.J. Nguyen, 2001. 

Flexible programming with random data is used 

in several applications (S.Wang and G.H. 

Huang, 2011, H. Rommelfanger, 1996, T.F. 

Liang 2012 and John Munro, 1984). 

 

         Mathematical Program with random 

variables having fuzzy parameters 

  

Mathematical Programs with random variables 

having fuzzy parameters are   in common 

occurrence in many applications (S. Nanda, G. 

Panda and J. Dash, 2006, F. ben Abdelaziz, 

L.Enneifar and J.Martel, 2004). 

As a matter of fact, experts who provide data 

for a problem that may be cast into a 

mathematical programming setting may feel 

more comfortable in coupling their vague 

perceptions with hard statistical data. 

By the way of example, consider a portfolio 

selection problem where, due to stock experts’ 

judgments and investors’ different options, the 

security returns are modelized as random 

variables with imprecise parameters. 

Readers interested in mathematical formulation 

and treatment of random variables with fuzzy 

parameters might refer to J.J. Buckley and E. 

Eslami, 2003, and J.J. Buckley and E. Eslami, 

2004. 

Consider the mathematical program 

(P2)   
min c x                          
Ai
∗ ≤ bi

∗    i = 1,… , m
x ≥ 0                            

  

where * means that the datum is  a normal 

random variable with some fuzzy parameters. 

To convert (P2) in deterministic terms, a 

fuzzified version of the well-known chance-

constrained programming approach (J.R. Birge 

and F.Louveaux, 1997) is used in the literature, 

(see e.g. M.K. Luhandjula, 2004 and M.K. 

Luhandjula, 2010). 

A deterministic counterpart of (P2) is then 

obtained through the following optimization 

problem: 

(P2)′  

 
 
 

 
 

P 

min cx                                                         

( aij
∗ xj ≤ bi

∗)

n

j=1

 ≥  δ i;   i = 1, … , m

 x ∈ X = {x ∈ ℝn  x ≥ 0}                      

  

Where P  stands, for uncertain probability (J.J. 

Buckley and E. Eslami, 2003, J.J. Buckley and 

E. Eslami, 2004), δ i  ( i = 1,… , m) are fuzzy 

thresholds fixed by Decision Maker  and c = 

E(c ). 

Three cases may be considered. 

Case 1:  bi
∗ (i = 1, … , m) are real numbers 

denoted merely bybi  (i = 1,… , m). 

This means that for all I, bi
∗ is regarded as a 

random variable having as set of parameters the 

singleton {bi}. 
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It is further assumed that for all (i, j), aij
∗  is a 

normally distributed random variable with 

fuzzy number m ij  and fuzzy number 

varianceσ ij
2 . 

In this case, μ 
i

=  aij
∗ xj

n
i=1  is also a random 

variable whose mean and variance are fuzzy 

numbers denoted by m μ i
 and  σ μ i

2  respectively 

(H. Kwakernaak, 1979). 

As  δ i, m μ i
 and  σ μ i

2 are fuzzy numbers, their α-

levels are real intervals denoted as follows: 

δ i
α

= [δi
αL ,       δi

αU ] 

 

m μ i

α = [mμ i

αL , mμ i

αU ] 

 

σ μ i

2α = [ σμ i

2αL , σμ i

2αU ]. 

The following result, the proof of which may 

be found in M.K. Luhandjula (2010), provides 

a deterministic counterpart of (P2) through(P2)′. 

 

Theorem 3.1 

If in addition to the above mentioned 

assumptions aij
∗  (j = 1,… , n) are independent, 

then (P2)′ is equivalent to the following 

optimization problem: 

 

 

(P2)′′  

 
 
 

 
 

Φ

min cx                                                                           

 
bi − mμi

αU

σμi

2αU
 ≥ δi

αU    ∀α ∈  0, 1 ;   i = 1,… , m      

 x ∈ X = {x ∈ ℝn  x ≥ 0}                                         

  

 

where Φ is the cumulative distribution of 

normal 0-1. 

 

Case 2:     aij
∗  (i = 1,… , m ;  j = 1,… , n) are 

real numbers. 

 

It is also assumed that, for all i,  bi
∗ is normally 

distributed random variable whose mean and 

variance are m b i
 and  σ b i

2  respectively. 

In this case, the α-cuts of  m b i
 and  σ b i

2  are 

respectively 

 

m b i

α = [mb i

αL       ,  mb i   
αU ] 

 

σ b i

2α = [σb i

2αL       ,  σb i   
2αU ]. 

 

The following result, the proof of which may 

be found in M.K. Luhandjula, 2010, gives a 

crisp counterpart of (P2) through(P2)′. 
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Theorem 3.2 

 

If, in addition to the above assumptions  

bi
∗ (i = 1,… , m)  are independent, then (P2)’ is 

equivalent to the following mathematical 

program: 

                        

(P2)′′′  

 
 

 

Φ

min cx                                                                                                     

 
 aij

n
j=1 xi  −mb i

αU

σb i

2αU  ≤ 1 − δi
αU    ∀α ∈  0, 1 ;   i = 1, … , m             

 x ∈ X = {x ∈ ℝn  x ≥ 0}                                                                 

  

Case 3:    General case 

 

Here we assume that both  aij
∗  and   bi

∗ are 

random variables with fuzzy parameters. 

Let  ξ
i
∗ =   aij

∗n
j=1 xj − bi

∗ 

Then according to M.K. Luhandjula, 2010,   ξ
i
∗
 

is also normally distributed with fuzzy means 

m ξi (x) and fuzzy variance  σ ξi (x)
2 . 

 

The following result (M.K. Luhandjula, 2010) 

provides a crisp counterpart of (P2) through 

(P2)′  for the general case. 

 

Theorem 3.3 

 

Under the above mentioned assumptions and if 

aij
∗  and   bi

∗ are independent, then (P2)’ is 

equivalent to the following optimization 

problem: 

                                   

 
 

 
Φ

min cx                                                                   

 
−mξi (x )

αU

σξi (x )
2αU  ≥ δi

αU    ∀α ∈  0, 1 ;   i = 1, … , m  

 x ∈ X = {x ∈ ℝn  x ≥ 0}                                

  

 

From the above three results, algorithms have 

been described for solving (P2). An interested 

reader is invited to consult M.K. Luhandjula, 

2010, for details on these matters. 

 

Mathematical programming with fuzzy 

random coefficients 

 

Without a shadow of doubt, fuzzy random 

variable development (H.Kwakernaak, 1979, A. 

Colbi, J.S.Dominguez Menchero, M.Lopez-

Diaz and D.A. Ralescu, 2001), has been 

catalyst  that helped in the growth of Fuzzy Stochastic Optimization. 

As matter of fact, fuzzy random variables 

provided a gold mine of opportunities for 

dealing with several aspects where fuzziness 

and randomness are combined in a 

mathematical setting. 

One of the first optimization model involving 

fuzzy random coefficients is given below. 

 

 P3  

 
  
 

  
 min cjxj                               

n

j=1

 aij xj

n

j=1

⊆ bi  ;  i = 1,… , m

xj ≥ 0 ; j = 1,… , n             
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where  cj , aij  and  bi are fuzzy random 

variables on  (Ω, ℱ, Ρ) . 

A first step toward solving this problem is to 

put it in the following equivalent form. 

 

 P3 ′

 
 
 
 

 
 
 

min t                                        

  cjxj  ≤ t                             

n

j=1

  aij xj

n

j=1

⊆ bi  ;  i = 1,… , m

 xj ≥ 0 ; j = 1,… , n               

  

 

where t is a maximal tolerance interval for the 

objective function. 

It is shown in M.K. Luhandjula, (2004) that 

 P3 ′ can be put in the form of a semi-infinite 

stochastic program. An approach combining 

Monte-Carlo simulation and cutting-plane 

technique for semi-infinite stochastic 

optimization problems may be found elsewhere 

(M.K. Luhandjula, 2007). 

For the inequality constrained case, that is for 

the optimization problem: 

 

 P4  

 
  
 

  
 min cjxj                               

n

j=1

 aij xj

n

j=1

≤ bi  ;  i = 1,… , m

xj ≥ 0 ; j = 1,… , n             

  

 

where  cj , aij  and  bi are fuzzy random 

variables, the commonly used approach is to 

craft a deterministic surrogate of the fuzzy 

stochastic optimization problem at hand, by 

exploiting structure available while sticking, as 

well as possible, to uncertainty principles. 

Two paradigms are used to this end: the 

approximation paradigm (N.Van Hop, 2007 

and E.E. Ammar, 2009) and the equivalence 

one (M.K. Luhandjula, 2011). 

In the approximation paradigm the original 

problem is approximated (in some sense) by 

another one. The later being solved by existing 

techniques. For instance, replace involved 

fuzzy random variables by their expectation 

and solve the resulting fuzzy program by 

existing techniques (Y.K.Liu and B. Liu, 2005). 

Approaches along this approximation paradigm 

have often been questioned in terms of 

robustness and general validity. As a matter of 

fact, without a serious output analysis, ascertain 

both the quality of the approximation and the 

validity of obtained solutions. 

Regarding the equivalence paradigm, the 

problem at hand is replaced by an equivalent 

one. The equivalent problem is obtained by 

making use of an Embedding Theorem for 

fuzzy random variables. 

To put this in perspective, consider the 

following optimization problem: 
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 P5   min f (x)
x ∈ X      

  

 

where f : ℝn ⟶ Ϝ(Ω), Ϝ(Ω) denotes the space 

of fuzzy random variables on  (Ω, ℱ, Ρ)  and X 

is a convex and bounded subset of ℝn . 

 P5  is equivalent to  

   P5 
′   min σ(f  x )

x ∈ X           
  

 

where σ is the isomorphism obtained from the 

Embedding Theorem for fuzzy random 

variables (M.K. Luhandjula, 2011). 

Making use of the definition of  σ,  P5 ′ can be 

written as follows. 

                                                           

 P5 ′′  
min    f ω

L x  α , f ω
U x  α         

x ∈ X                                                    
α ∈  0, 1 ;  ω ∈ Ω                             

  

 

 

Worthy to denote here is the fact that   P5 ′′  is 

a stochastic multiobjective program with 

infinitely many objective interval functions. 

Some ways to deal with this optimization 

problem are described in M.K. Luhandjula and 

A.S. Adeyafa (2010). 

Mathematical programming problem with 

random data and fuzzy numbers may be solved 

using approaches discussed in this section. 

As a matter of fact, random data and fuzzy 

numbers may be regarded as degenerate fuzzy 

random variables. 

An interested reader is referred to M.K. 

Luhandjula, 2004, where an approach for 

solving a linear program having fuzzy numbers 

as coefficients of technological matrix and 

random variables as components of the vector 

of the second member is described. 

 

Extensions and Applications 

 

Ideas discussed in previous sections have been 

extended to nonlinear programming problems 

in the presence of fuzzy and random data (E.E. 

Ammar, 2008, Y.K.Liu and B. Liu, 1992, and 

B.Liu, 2001). Extensions of Fuzzy Stochastic 

Optimization have also been carried out 

towards multiobjective Programming Problems 

(Jun Li and Jiuping Xu, 2008, M. Sakawa, 

I.Nishizaki and H. Katagiri, 2011, H. Katagiri, 

M. Sakawa and H.Ishii, 2005), multilevel 

optimization (R.Liang, J.Gao and K.Iwamura, 

2007, and J.Gao and B. Liu, 2005) and 

multistage mathematical programs. 

The field of Fuzzy Stochastic optimization is 

rich of potential applications, as a matter of 

fact, uncertainty and ubiquitous in real life 
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problems. Zadeh’s incompatibility principle 

stipulating that, when the complexity of system 

increases, our aptitude to make precise 

statements about it decreases up to threshold 

where precision and significance become 

mutually exclusive characteristics, is telling in 

this regard.  

The simplistic way consisting of replacing 

arbitrarily imprecise data by precise ones, 

caricature badly the reality. 

Many applications of Fuzzy Stochastic 

optimization are reported in the literature. Here 

are, without any claim for exhaustive study, 

some of them: Financial applications (Z. 

Zimeskal, 2001), industrial applications (H.T. 

Nguyen, 2005), marketing applications 

(K.Weber and L. Gromme, 2004), water 

resources applications (I. Maqsood, G.H. 

Huang and J.S. Yeomans, 2005) and portfolio 

applications (X. Huang, 2007).  

 

  Concluding remarks and perspectives for 

future research 

 

In many concrete situations, one may have to 

combine evidence from different sources and as 

a result to grapple with both probabilistic and 

probabilistic uncertainty. The proved 

irreducible differences between the two kinds 

of uncertainty call for ways of integrating them 

simultaneously into mathematical models. 

To assert that it is more useful to conceive 

imprecision as a variegated whole is not to 

minimize important research works that have 

been done in specific aspects (Fuzzy 

Programming, Stochastic Programming). 

It is instead to assert that new perspectives for 

coping with complex real life problems may be 

gained by integration of both approaches than 

exclusion. 

We have surveyed the terrain covered by Fuzzy 

Stochastic Optimization with an eye to some 

important themes and questions, with 

propensity for ideas rather than technical 

considerations.  

 

The main lessons that can be drawn from this 

overview are as follows. 

 

- The area of competence of Fuzzy Stochastic 

Optimization is known along with some matrix 

of values that make it distinctive from other 

fields of mathematical programming under 

uncertainty. 

- Fuzzy Stochastic Optimization deserves 

attention of researchers.     

As a matter of fact, it is of great help in pulling 

users of mathematical programming models out 

of abyss of resorting to the hammer principal  

(when you have only a hammer, anything at 

your hand is considered as a nail), while 
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making decision in a complex environment 

involving both randomness and fuzziness. 

A blind suppression of inherent randomness 

and fuzziness for the sake of data 

uniformization, leads generally to a caricatured 

picture of reality. 

- The field is still in stammering stage and a lot 

of work remains to be done. 

 

Among lines for further developments in this 

field, we may mention: 

 

- Theoretical contributions on the 

characterization of solutions of Fuzzy 

Stochastic programs. 

- Production of user-friendly software for Fuzzy 

Stochastic Optimization Problems. 

- Design of epistemological choices for   

defuzzification and derandomization that leads 

to effective and efficient approaches for solving 

fuzzy stochastic optimization problems. 

- Description of high quality case studies in order 

to demonstrate usefulness of Fuzzy Stochastic 

Optimization. 
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