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Abstract  

This research was conducted using monthly average temperature and rainfall data measured at Kamembe weather station 

located in Western province of Rwanda to estimate in separate section the trends, the seasonal variability, to identify all possible 

ARIMA models and the best model to be used in forecasting the future temperature and rainfall condition at Kamembe, and 

also to make a linkage of temperature and rainfall to the lighting. R programming and R studio was used to achieve on our 

objectives. From 1961 to 2017 for both parameters the monthly average rainfall and temperature varies between 0-287mm and 

22.32-28.34oC. The minimum monthly rainfall intensity was obtained during long dry season exactly June and the maximum 

intensity was observed during shorter rainy season mainly October but during long rainy season in February the intensity of 

rainfall is nearly close to that of October, and minimum temperature was observed during long rain season mainly during May 

and very close to that observed during November while the maximum monthly average temperature was observed during long 

dry season exactly during August. We have estimating all possible ARIMA models to be used and we identify the best model 

for analyzing monthly average rainfall and monthly average temperature data and forecasting which was ARIMA (3,0,3) (2,1,2) 

[12] and ARIMA (5,1,0) (2,0,0) [12] respectively. By forecasting we realize that the temperature will continue to increase up 

to 2022, thus higher water will be deposited in atmosphere as thunderstorms which are GHG and this phenomenon together 

with others mainly such as ITCZ and Kamembe topography will cause the increase of lighting.  

Keywords: Temperature, Rainfall, Autoregressive Processes (AR), Moving Average Processes (MA), Auto Regressive Integrated Moving 

Average (ARIMA) model, forecast, Kamembe, Rwanda. 

1. Introduction 

Rainfall and temperature are among the basic parameters that 

determine weather condition. It is also the most investigated 

meteorological parameters due to its spatial and temporal 

changes affecting environmental communities (Ferrari and 

Coscarelli, 2018). These two parameters are only to be 

considered in this study and analyzed separately even if there 

are more others parameters that affect weather including 

pressure, relative humidity, solar radiation, winds, clouds, 

visibility and so on (Seinfeld and Pandis, 2006). Such 

parameters may exploit for different purpose like energy 

production simply solar energy, wind energy etc. There is 

some science needed for production of such energy, for wind 

energy there is a need of wind speed, direction, continuity and 

also its availability (Safari and Gasore, 2011). The atmosphere 

is transparent to the incoming solar radiation from the sun 

(short waves radiation) and opaque to the long waves from the 

earth’s surface as infrared (Wallace and Hobbs, 2006). The 

main five goals of this study was: (i) to estimate the trends of 

monthly average rainfall and temperature at Kamembe (ii) the 

evaluation of the seasonal and monthly variability and (iii) 

evaluate the all ARIMA models and the best model among 

them (iv) the assessment of the ability of the best model to 

predict the future condition using ARIMA models (v) the link 

between temperature, rainfall to the lighting.  

In the second half of the 21st century and beyond, global 

temperature will increase diverges across emission scenarios 

(IPCC, 2014). The global scale increase in temperature up to 

2100 ranging from 1.8 to 4 °C (Nshombo and Laleye, 2018). 

And in this study we focus on case study which is kamembe 

and we forecast very few years for the accuracy of the model 

results. The relative humidity at Kamembe station decrease 

from 1971 up to 2013 and wind speed decrease from1971 to 

1995 where it start to increase up to 2015, the annual mean  

wind  speed at Kamembe sites is 2.97ms-1 with dominant wind 

direction of 150o (Ndeda, 2015).  And also, the water level of 

lake Kivu decrease from 1960 to 2012 (Nshombo and Laleye, 

2018). And this implies that the lake water body evaporate and 

this affect the rainfall of the surrounding area including 

Kamembe but not for long distance as the wind speed was 

decreased. The western region of Rwanda along with volcanic 

region is the wettest compared to other remaining part of 

country (U. N. F. C. C., 2018). 

By prediction the temperature across Rwanda will increase 

from 1℃ to 2.5℃ between 2000 and 2050 and 1℃ to 6℃ by 

2100. This increase is said to be consistent across the country 
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and seasons even if dry season may have higher temperature 

increase (Warner et al., 2015). But globally it is estimated that 

at 2˚C of temperature increment, global sea levels would rise 

by 10cm due to the melting of ice and ice sheets, thus between 

the increase of 40cm to 50cm will be reached by 2100 

(Pringle, 2018), the National Academy of Sciences (2011) 

state that the main contributors of this warming are 

anthropogenic activities emitting greenhouse gases (GHGs) 

and aerosols particles which alter the Earth’s energy budget. 

The GHGs drive the global warming while aerosols drive 

cooling effect (Trenberth et al., 2000). While the prediction of 

rainfall using annual rainfall models are between -100 mm and 

+400 mm during 2000 to 2050. Here the rainfall is expected 

to be intense during rainy season (Warner et al., 2015). 

Rainfall is a major factor in shaping the vegetation, hydrology, 

and water quality all over the world (Nkuna and Odiyo, 2016). 

Rainfall intensity projection is very necessary due to the 

intense rainfall events may cause direct effects such as 

disasters including landslides, mudslides, floods (Ndayisenga, 

2020) and significant erosion particularly in the steep, 

mountainous terrain due to its highest slope mainly that of 

Kamembe and commonly western part of Rwanda (Siebert et 

al., 2019) and even in the indirect pathways (WHO, 2014) the 

indirect effect of such disaster include malaria and diarrhea 

and other related burden diseases (Henninger, 2013). The 

relative humidity increase slightly from 1955 to 1992 and fall 

down directly at this year and then start to increases slightly 

as usual up to 2010 (Mcsweeney and Cole 2011).  The 

prediction is very important tools to understand the expected 

future change and expect the impact driven by that change and 

variability (Muhire et al,. 2015) and the magnitude of 

variability varies according to the locations (Panda, 2019). 

2. Drivers of weather and climatology variability  

As some others part of Rwanda, the weather and climate 

systems in Kamembe is affected by many international and 

even regional drivers, some of them include El Niño and La 

Niña phenomena due to their effect of shifting walker 

circulation which cause heavy rain and dry condition in 

different region (Byamukama et al., 2011). Other moisture are 

due to the movement of the Inter Tropical Convergence Zone 

(ITCZ) along Hadley cell controlled by Mascarene, St. 

Helena, Azores, Arabian and Sahara  high pressure systems 

(anticyclones).  ITCZ experiencing two rainfall seasons across 

Rwanda and generally in East Africa, and govern the transport 

of moisture during MAM season which shifts from South to 

North due to the southeast monsoon, another driver of weather 

condition variability include Indian Ocean by altering the 

Walker circulation (Ntwali et al., 2016). And we do not 

neglect the contribution of Subtropical anticyclones, Atlantic 

and Congo air mass accompanied by very strong southerly 

winds, Inter-seasonal wave variation, Regional topography, 

anabatic and katabatic wind, large water bodies (e.g. Lake 

Kivu, Victoria, Tanganyika), and large forests (Byamukama 

et al., 2011) mainly Nyungwe forest, the most intense species 

in this forest is dependent to the seasonal rainfall and 

temperature (Kormos et al., 2017). In agriculture sector the 

seasonal variation of rainfall and even temperature reduce 

crops yield (Cong and Brady, 2012). 

3. Study area 

In this study the rainfall data and temperature data used was 

collected at Kamembe Meteorological Weather Station 

located in Rusizi district, Western province of Rwanda. This 

station has Meteorological Station, World Meteorological 

Organization ID of 641750-99999 and N/A respectively. It is 

located at +1588.0 m of elevation -2.46 latitude and 28.91 of 

longitude (Siebert et al., 2019). This station is not so far from 

lake Kivu and Nyungwe forest.  

 

Figure 1: Kamembe weather station 

4. Methodology  

We use data of monthly average rainfall and monthly average 

temperature collected at Kamembe weather station, and we 

use R programming and R Studio by time series analysis. Our 

data firstly both monthly average temperature and rainfall data 

was time series class, yearly data, no missing data realized and 

for rainfall the data started since January 1981and end 

November 2017 while for temperature the data started since 

January 1961 and end June 2017 but we prefer to start since 

1961 for both parameters. The results for rainfall and 

temperature data are presented in separate sections in this 

study. 

 

5. Results and discussion 

Table 1 summarize the basic six statistics, mean (𝑋̅) is the 

average of the data values, and the median is the 50th percentile 
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(𝑝50) of the data set or second quartile. This is the point that 

splits the data base in half while 25th percentile is called the 

first (lower or 𝑝25) quartile, and the 75th percentile is called 

the third (upper or 𝑝75) quartile, in other word the first quartile 

is the median (middle value) of the first half of a set of values 

and the third quartile is the median of the second half quartile. 

The minimum and maximum values indicate the range of our 

data. 

Table 1: Basic data summary statistics 

 

5.1. Autoregressive Processes AR(p) 

The autoregressive model of order 1, AR (1), is defined as; 

  𝑋𝑡 = ɸ 𝑋𝑡−1 +  𝑤𝑡                                                             (2) 

Autoregressive processes are as their name suggests 

regressions on themselves. Specifically, a pth-order 

autoregressive process {Xt} satisfies the equation (3):  

 

Figure 2: AR (1) rainfall Kamembe 

The equation for figure 2 and 3 is: 𝑋𝑡 = 0.9 𝑋𝑡−1 +  𝑤𝑡  and 

some parameter are summarized in table 1. And Expectation 

E[𝑋𝑡] = 0 , Var(𝑋𝑡) =
𝜎𝑤

2

(1−ɸ1
2)

                                              (4) 

For ACF 𝜌ℎ = ɸ
1
ℎ  and for PACF  𝜌11 = 𝜌1 = ɸ

1
, ɸ

ℎℎ
=

0   for all h ≥ 2             

5.2. Moving Average Processes (MA) 

ACF for MA(1): 

A general linear process is expressed by this equation: 

𝑋𝑡 = 𝑤𝑡 + 𝜃1𝑤𝑡−1 + 𝜃2𝑤𝑡−2 + ⋯ + 𝜃𝑞𝑤𝑡−𝑞                     (5) 

𝑋𝑡 = 𝑤𝑡 + ∑ 𝜃𝑗𝑤𝑡−𝑗
𝑞
𝑗=1                                                        (6) 

Where 𝑤𝑡~𝑤𝑛(0, 𝜎𝑤
2 ), and 𝜃1, 𝜃2, … , 𝜃𝑝 (𝜃𝑝 ≠ 0) are 

parameters. 

For MA (1) series is represented by 𝑋𝑡 = 𝑤𝑡 + 𝜃1𝑤𝑡−1 where 

only one 𝜃1 is involved, clearly   Expectation E(𝑋𝑡) = 0 and  

 𝑋̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
,  𝑅𝑎𝑛𝑔𝑒 = (𝑀𝑎𝑥 − 𝑀𝑖𝑛) and  

percentile (𝑖𝑡ℎ =
𝑝

100
× 𝑛)                                                  (1) 

 

 

𝑋𝑡 = ɸ
1

 𝑋𝑡−1 + ɸ
2

 𝑋𝑡−2 + ⋯ + ɸ
𝑝

 𝑋𝑡−𝑝 +  𝑤𝑡 =

∑ ɸ
𝑖
 𝑋𝑡−𝑖

𝑝
𝑖=1 + 𝑤𝑡                                                                (3) 

Where 𝑋𝑡 is stationary, 𝑤𝑡~𝑤𝑛(0, 𝜎𝑤
2), and 

ɸ1, ɸ2, … , ɸ𝑝 (ɸ𝑝 ≠ 0) are model parameter and the 

hyperparameter p represent the length of the direct look back 

in the series.  

Figure 3: AR(1) Temperature Kamembe 

𝑉𝑎𝑟(𝑋𝑡) = 𝜎𝑤
2(1 + 𝜃1

2)                                                       (7) 

𝛾1 =  −𝜃1𝜎𝑤
2  

𝜌1 =  
−𝜃1

(1+𝜃1
2)

 where 𝜌ℎ = 0  𝑓𝑜𝑟 ℎ ≥ 2                                (8) 

While for PCAF for MA(1): 

 ɸ
ℎℎ

=
(−𝜃1)ℎ(1−𝜃1

2)

1−𝜃1
2(ℎ+1)           ℎ ≥ 1                                             (9) 

5.3. Auto Regressive Integrated Moving Average 

(ARIMA) model 

ARIMA model is specified by three order parameter: p, d, q 

(p: number AR terms, d: how many non-seasonal differences 

are needed to achieve stationary, q: number of lagged 

Data   Min. 1st   Qu.   Median   Mean  3rd Qu.   Max. 

Monthly Average temp. 22.32 24.47  25.16 25.26 25.93 28.34 

Monthly average Rainfall    0 58.79  116.71 106.35 150.1 287 
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forecasters in the prediction equation MA).  And generally this 

model can be written as: 

ɸ(B)(1 − B)𝑑𝑋𝑡 = 𝜃(𝐵)𝑤𝑡                                               (10) 

Use of ACF and PACF to identify potential AR and MA 

model 

We can now create autocorrelation factor (ACF) and partial 

autocorrelation factor (PACF) plots to identify stationality in 

our data on both mean and variance for all possible lag. The 

idea is to identify presence of AR and MA components in the 

residuals. ACF tells us how correlated points are with each 

other, based on how many times steps they are separated by. 

It is used to determine how past and future data point are 

related in a time series, ACF is defined mathematically as: 

𝜌(𝑠, 𝑡) =
𝛾(𝑠,𝑡)

√𝛾(𝑠,𝑠)𝛾(𝑡,𝑡)
                                                          (11) 

and according to Cauchy-Schwarz inequality; 

 |𝛾(𝑠, 𝑡)|2 ≤  𝛾(𝑠, 𝑠)𝛾(𝑡, 𝑡) , Then can be used to derive the 

range of ACF:  −1 ≤ 𝜌(𝑠, 𝑡) ≤ +1 

 

Figure 5: ACF and PACF plot 

This show that our data are not stationary and some values 

goes beyond the range (blue line) and thus it indicate that those 

values are correlated, now let find out those values using R 

programming and are listed as annex1.  Then we continue by 

differencing technics to make our series stationary, this is done 

in different order. It is also the process of subtracting one 

observation from another, it is used for transforming non 

stationary data into stationary data.  

For first differencing order (d=1)  𝑋𝑡
′ = 𝑋𝑡 − 𝑋𝑡−1          (12) 

(d=2):  𝑋𝑡
′ = 𝑋𝑡 − 𝑋𝑡−1 − 𝑋𝑡−2      

    ⋮                                

 (d=n):  𝑋𝑡
′ = 𝑋𝑡 − 𝑋𝑡−1 − 𝑋𝑡−2 − ⋯ − 𝑋𝑡−𝑛                   (13) 

 

Figures 6: Rainfall and temperature Diff-1
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Figures 7: Rainfall and temperature Diff-2 

Figure 8: Rainfall Diff-3  

 
Figure 9: Temperature Diff-5 

Simply this series looks stationary on both mean and variance 

to be specific you may check stationarity using ACF and 

PACF plot.  

Now by expanding AR(1) representation: 

𝑋𝑡 = ɸ1 𝑋𝑡−1 + 𝑤𝑡 

     = ɸ1(ɸ1 𝑋𝑡−2 +  𝑤𝑡−1) + 𝑤𝑡  

      = ɸ1
2𝑋𝑡−2 +  ɸ1𝑤𝑡−1 + 𝑤𝑡 

           ⋮ 

      =ɸ1
𝑘𝑋𝑡−𝑘 + ∑ ɸ1

𝑗
𝑤𝑡−𝑗

𝑘−1
𝑗=0                                   (14) 

As ɸ1 < 1 and 𝑠𝑢𝑝𝑡𝑉𝑎𝑟(𝑋𝑡) < ∞, we have: 

𝑋𝑡 = ∑ ɸ1
𝑗
𝑤𝑡−𝑗

∞
𝑗=0                                                             (15) 

Thus this is called the stationary solution. 

In general, for AR(p) when ℎ > 𝑝, theoretical PACF is zero, 

 ɸℎℎ = 𝑐𝑜𝑟𝑟(𝑋𝑡+ℎ − 𝑋̂𝑡+ℎ , 𝑋𝑡 − 𝑋̂𝑡) = 𝑐𝑜𝑟𝑟𝑤𝑡+ℎ, 𝑋𝑡 − 𝑋̂𝑡 =

0                                                                                        (16) 

And when ℎ ≤ 𝑝, ɸ𝑝𝑝 is not zero and 

ɸ11, ɸ22, … , ɸℎ−1,ℎ−1are not necessarily zero. 

Figures 10: Temperature and rainfall cycle. 

This figures 10 shows the mean of all monthly data from 

January up to December. Each box indicate the minimum 

value, 1st quartile, median, 3rd quartile and the maximum value 

respectively for each month. As for rainfall cycle there are 

outlier values which affect the mean it is best to use the median 

as the measure of central tendency instead of mean. This is 

more helpful to analyze the monthly based intensity of rainfall 
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and temperature. From January 1981 to November 2017 the 

least rainfall intensity is obtained during long dry season 

exactly June and the highest intensity is observed during 

shorter rainy season mainly October but during long rainy 

season in February the intensity of rainfall is nearly to that of 

October. For temperature profile between January 1961 to 

June 2017 the least temperature is observed during long rain 

season mainly during May and very close to that observed 

during November while the highest temperature is observed 

during long dry season exactly during August. The best way 

for looking full information is to consider the observed, trend, 

seasonal and random profile separately as figure 11 and 12 

summarized.  

The mathematical expression of decomposing this data is: 

𝑋 = 𝑆𝑡 × 𝑇𝑡 × 𝐸𝑡                                                              (17)  

 
Figure 11: Rainfall profile 

 
Figure 12: Temperature profile 

Where: 𝑆𝑡 is Seasonal variation, 𝑇𝑡 is the trend, 𝐸𝑡 is the 

remaining error. 

Trend show the general tendency of a time series to increase, 

decrease or stagnate over our data ranging period of time and 

Seasonal variation explains fluctuations within a year during 

the season, usually caused by climate factors, emissions, land 

surface cover, urbanization etc. Random variations are driven 

by unpredictable influences, not necessary to be regular or to 

repeat in a particular pattern, some of the main general causes 

of random variation include war, strike, earthquake, flood, 

revolution. 

 

 

Table 2: Rainfall and temperature best model coefficient 

 

6. Forecasting 

There are at least three major steps to consider in order to 

make an ARIMA forecast model including: Model 

specification, Parameter estimation, Diagnostics and potential 

improvement. During this study all steps was covered.  

For modelling specification we identify p, d, q. where d was 

obtained after checking stationarity of data, generally if data 

is stationary d=0, if not we take the first difference and check 

for stationarity again until a stationary output obtained as 

figure 8 and 9 shows. While p and q was obtained from PACF 

to get AR order p (PACF cuts off after some lags, that number 

obtained was the order of AR) and ACF to get MA order q 

(ACF cuts off after some lags, that number obtained was the 

order of MA). For parameter estimation the commonly used 

are least square, maximum likelihood, method of moments. 

And finally diagnostics by checking auto correlation of the 

residuals and look for improvement possible as figure 15 

shows.  

Here it was very necessary to fit model and the best model ob

tained were ARIMA(3,0,3)(2,1,2)[12] for rainfall data with si

gma square estimated of 1223 and log likelihood -2144.44, A

kaike information criteria (AIC)=4310.89 AICc=4311.52 and 

(Baysian information criteria) BIC=4355.61 while for temper

ature data was ARIMA(5,1,3)(2,0,0)[12], ARIMA(4,1,2)(2,0,

      Rainfall Kamembe related coefficients  
      ar1          ar2          ar3           ma1       ma2         ma3        sar1        sar2       sma1      sma2 

  0.4666    -0.3919    0.8541   -0.3556   0.4220   -0.9029   -0.4195   -0.0195   -0.3378   -0.3716 

s.e.     0.0539     0.0423    0.0463    0.0413    0.0291    0.0408    0.6271    0.0801     0.6262    0.5143 

    Temperature Kamembe related coefficients 

        ar1             ar2             ar3            ar4             ar5            sar1           sar2          drift 

  -0.5148      -0.4060      -0.4038      -0.3710      -0.1748      0.2035      0.2597      -0.0001 

     s.e.       0.0404       0.0406        0.0422       0.0417       0.0382      0.0400      0.0406        0.0176 
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0), ARIMA(5,1,1)(2,0,0)[12], ARIMA(4,1,1)(2,0,0)[12] and 

ARIMA(5,1,0)(2,0,0)[12] but among these models the most b

est was ARIMA(5,1,0)(2,0,0)[12] with sigma square estimate

d of 0.5237, log likelihood of -739.38, Akaike information cri

teria AIC=1496.77, AICc=1497.04, (Baysian information crit

eria) BIC=1537.43 the other related coefficient is in table (2) 

and all model as annex 2. 

Figure13: Rainfall residual plot 

Figure14: Temperature residual plot 

Now we check stationarity of our data using the following 

obtained residual plot and ACF and PACF for data 

stationarity: 

 

Figures15: ACF and PACF plot 

Thus these figures 15 shows that there is no time variability in 

the residual plots figure 13 and figure 14, in other ways our 

series becomes stationary, there is no further improvement 

needed and then based on this recent data we have, we can 

predict the future rainfall and temperature trends as shown on 

the figures 16 and 17 respectively. 

Here the confidence interval (𝜇) is 95 and forecast 5 years 

from January 2017. 

𝜇 = 𝑋̅ ± 𝑧 −
𝜎

√𝑛
                                                                 (18) 

Where standardized score or z-score is:  𝑧 =
𝑥−𝜇

𝜎
 (𝜇: 𝑚𝑒𝑎𝑛, 𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)

Figure 16: Rainfall forecast

Figure 17: Temperature forecast 
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Models Validation 

We use Box-Ljung test to validate our models, the Ljung-Box 

test can be defined as: 

𝐻0: The data are random 

𝐻𝑎: The data are not random 

Here we test: 𝑄𝐿𝐵 = 𝑛(𝑛 + 2) ∑
𝜌2(𝑗)

𝑛−𝑗

ℎ
𝑗=1                          (19) 

Table 3: Box-Ljung test parameters 

 

7. Conclusion 

Price, (2008) observe that for different timescale for only one 

increased degree of surface warming, lighting increase 10-

100%. Christian et al., (2003) shows that the annualized 

distribution of total lightning activity was mostly intense in 

East Africa than any where allover the world. This study 

shows that the temperature at kamembe will continue to 

increase up to 2022 based on confidence interval, this implies 

that the more water evaporate and the unequal surface heating 

influence ITCZ which are among the drivers of Kamembe 

climate as mentioned above and thunderstorms formation 

which is directly proportional to the regional weather.  The 

risk of lighting at this region will continue to increase due to 

higher water deposited in atmosphere by thunderstom 

formation which is one of the major GHGs. Even if it is 

difficult to quantify the concentration of 𝑁𝑂𝑥 produced by 

lighting through 𝑁𝑂 + 𝑁𝑂2 → 𝑁𝑂𝑥, this 𝑁𝑂𝑥 produce 𝑂3  in 

troposphere which is also GHG and continue warming the 

surface. Thus the hiher temperature of Kamembe as it will 

continue to increase the lighting probability increase with an 

influence of ITCZ and Kamembe topography. 
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Annex 1: Correlated values 

 

 

 

 

 

 

 

 

 

 

 

 

       ACF rainfall kamembe           

  1.000  0.568  0.164 -0.204 -0.312 -0.285 -0.265 -0.312 -0.325 -0.184  0.161  0.590  0.741  

  0.536  0.147 -0.164 -0.296 -0.315 -0.262 -0.315 -0.315 -0.159  0.176  0.528  0.681  0.526 
                                                      

0.148                       

        PACF rainfall Kamembe           

  0.568 -0.234 -0.290 -0.022 -0.066 -0.214 -0.279 -0.206 -0.041  0.211  0.445  0.322  0.120 

  0.020  0.004 -0.046 -0.111  0.087 -0.024 -0.032  0.018  0.003  0.022  0.113  0.130 -0.064 

        ACF temp. Kamembe            

  1.000 0.652 0.382 0.235 0.294 0.456 0.524 0.455 0.283 0.190 0.292 0.495 0.600 0.498 0.275  

  0.174 0.240 0.383 0.448 0.368 0.239 0.145 0.243 0.471 0.581 0.488 0.285 0.154 0.226    

        PACF temp. Kamembe           

  0.652 -0.075  0.028  0.256  0.298  0.137  0.034 -0.083 -0.003  0.190  0.255  0.159 -0.008  

 -0.129 -0.004  0.035  0.022 -0.014 -0.024  0.027 -0.043  0.079  0.218  0.119  0.017 -0.040 

 -0.070  0.040                     
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Annex 2: All ARIMA models fitted 

 Series: Temp. Kamembe      Series: Rainfall Kamembe 

 ARIMA(2,1,2)(1,0,1)[12] with drift         : Inf     ARIMA(2,0,2)(1,1,1)[12] with drift         : 4222.363 

 ARIMA(0,1,0)                  with drift         : 1787.233    ARIMA(0,0,0)(0,1,0)[12] with drift         : 4386.246 

 ARIMA(1,1,0)(1,0,0)[12] with drift         : 1659.924    ARIMA(1,0,0)(1,1,0)[12] with drift         : 4283.111 

 ARIMA(0,1,1)(0,0,1)[12] with drift         : 1666.449    ARIMA(0,0,1)(0,1,1)[12] with drift         : 4246.159 

 ARIMA(0,1,0)                                           : 1785.234    ARIMA(0,0,0)(0,1,0)[12]                         : 4384.289 

 ARIMA(1,1,0)                  with drift         : 1776.217    ARIMA(2,0,2)(0,1,1)[12] with drift         : 4220.313 

 ARIMA(1,1,0)(2,0,0)[12] with drift         : 1595.13     ARIMA(2,0,2)(0,1,0)[12] with drift         : 4387.88 

 ARIMA(1,1,0)(2,0,1)[12] with drift         : Inf     ARIMA(2,0,2)(0,1,2)[12] with drift         : 4220.483 

 ARIMA(1,1,0)(1,0,1)[12] with drift         : Inf     ARIMA(2,0,2)(1,1,0)[12] with drift         : 4277.356 

 ARIMA(0,1,0)(2,0,0)[12] with drift         : 1673.494    ARIMA(2,0,2)(1,1,2)[12] with drift         : 4195.012 

 ARIMA(2,1,0)(2,0,0)[12] with drift         : 1570.357    ARIMA(2,0,2)(2,1,2)[12] with drift         : 4191.318 

 ARIMA(2,1,0)(1,0,0)[12] with drift         : 1639.888    ARIMA(2,0,2)(2,1,1)[12] with drift         : 4199.748 

 ARIMA(2,1,0)(2,0,1)[12] with drift         : Inf     ARIMA(1,0,2)(2,1,2)[12] with drift         : 4202.827 

 ARIMA(2,1,0)(1,0,1)[12] with drift         : Inf     ARIMA(2,0,1)(2,1,2)[12] with drift         : 4204.492 

 ARIMA(3,1,0)(2,0,0)[12] with drift         : 1551.396    ARIMA(3,0,2)(2,1,2)[12] with drift         : 4193.617 

 ARIMA(3,1,0)(1,0,0)[12] with drift         : 1601.059    ARIMA(2,0,3)(2,1,2)[12] with drift         : 4193.27 

 ARIMA(3,1,0)(2,0,1)[12] with drift         : Inf     ARIMA(1,0,1)(2,1,2)[12] with drift         : 4203.775 

 ARIMA(3,1,0)(1,0,1)[12] with drift         : Inf     ARIMA(1,0,3)(2,1,2)[12] with drift         : 4202.774 

 ARIMA(4,1,0)(2,0,0)[12] with drift         : 1506.335    ARIMA(3,0,1)(2,1,2)[12] with drift         : 4205.871 

 ARIMA(4,1,0)(1,0,0)[12] with drift         : 1540.616    ARIMA(3,0,3)(2,1,2)[12] with drift         : 4189.865 

 ARIMA(4,1,0)(2,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(1,1,2)[12] with drift         : 4196.974 

 ARIMA(4,1,0)(1,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,1)[12] with drift         : 4201.919 

 ARIMA(5,1,0)(2,0,0)[12] with drift         : 1484.273    ARIMA(3,0,3)(1,1,1)[12] with drift         : 4231.544 

 ARIMA(5,1,0)(1,0,0)[12] with drift         : 1518.936    ARIMA(4,0,3)(2,1,2)[12] with drift         : 4201.141 

 ARIMA(5,1,0)(2,0,1)[12] with drift         : Inf     ARIMA(3,0,4)(2,1,2)[12] with drift         : 4195.533 

 ARIMA(5,1,0)(1,0,1)[12] with drift         : Inf     ARIMA(2,0,4)(2,1,2)[12] with drift         : 4192.3 

 ARIMA(5,1,1)(2,0,0)[12] with drift         : 1462.404    ARIMA(4,0,2)(2,1,2)[12] with drift         : 4196.833 

 ARIMA(5,1,1)(1,0,0)[12] with drift         : 1485.056    ARIMA(4,0,4)(2,1,2)[12] with drift         : 4196.293 

 ARIMA(5,1,1)(2,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.259 

 ARIMA(5,1,1)(1,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.260 

 ARIMA(4,1,1)(2,0,0)[12] with drift         : 1476.657    ARIMA(3,0,3)(2,1,2)[12]                         : 4188.261 

 ARIMA(5,1,2)(2,0,0)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.262 

 ARIMA(4,1,2)(2,0,0)[12] with drift         : 1462.265    ARIMA(3,0,3)(2,1,2)[12]                         : 4188.263 

 ARIMA(4,1,2)(1,0,0)[12] with drift         : 1499.699    ARIMA(3,0,3)(2,1,2)[12]                         : 4188.264 

 ARIMA(4,1,2)(2,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.265 

 ARIMA(4,1,2)(1,0,1)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.266 

 ARIMA(3,1,2)(2,0,0)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.267 

 ARIMA(4,1,3)(2,0,0)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.268 

 ARIMA(3,1,1)(2,0,0)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.269 

 ARIMA(3,1,3)(2,0,0)[12] with drift         : Inf     ARIMA(3,0,3)(2,1,2)[12]                         : 4188.270 

 ARIMA(5,1,3)(2,0,0)[12] with drift         : 1456.417       

 ARIMA(5,1,3)(1,0,0)[12] with drift         : Inf        

 ARIMA(5,1,3)(2,0,1)[12] with drift         : Inf        

 ARIMA(5,1,3)(1,0,1)[12] with drift         : Inf        

 ARIMA(5,1,4)(2,0,0)[12] with drift         : Inf        

 ARIMA(4,1,4)(2,0,0)[12] with drift         : Inf        

ARIMA(5,1,3)(2,0,0)[12]                                               

        : 

Inf          
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